643 research outputs found

    A high performance domain specific OCR for Bangla script

    Get PDF
    Includes bibliographical references (page 5).Abstract-Research on recognizing Bengali script has been started since mid 1980’s. A variety of different techniques have been applied and the performance is examined. In this paper we present a high performance domain specific OCR for recognizing Bengali script. We select the training data set from the script of the specified domain. We choose Hidden Markov Model (HMM) for character classification due to its simple and straightforward way of representation. We examine the primary error types that mainly occurred at preprocessing level and carefully handled those errors by adding special error correcting module as a part of recognizer. Finally we added a dictionary and some error specific rules to correct the probable errors after the word formation is done. The entire technique significantly increases the performance of the OCR for a specific domain to a great extent

    Growth and nutritional value of a Tropical Green Alga, Ankistrodesmus convolutus corda, in Agro-industrialeffluents

    Get PDF
    Use of agro-industrial effluents for microalgal culture was investigated using a tropical freshwater green alga, Ankistrodesmus convolutus cultured in various dilutions of latex concentrate effluent (LCRE), standard Malaysian rubber effluent (SMRE) and digested palm oil mill effluent (POMED). Ankistrodesmus convolutus grown in 40%and 60%LCRE, 60%SMRE and 10% POMED showed significantly higher (P < 0.05) specific growth rate in terms of cell number and chlorophyll a than that grown in other effluent media and inorganic fertiliser (N:P:K = 1:1:0.5) as control. Total biomass of this microalgae grown in 60%LCRE, 60%SMRE and 10% POMED was significantly higher (P < 0.05) than that cultured in other effluent media and the control. Ankistrodesmus convolutus cultured in 40% and 60% LCRE, 60% SMRE and 10% POMED showed significantly (P < 0.05) higher amount of crude protein and lipid than that grown in other effluent media and the control. Significantly higher (P < 0.05) amount of most of the essential amino acids (EAAs) except a few were found in A. convolutus cultured in 60% LCRE and 60% SMRE than that grown in other effluent media and control. Ankistrodesmus convolutus cultured in 10% POMED resulted in significantly higher (P < 0.05) amount of all the EAAs except threonine and tyrosine that were grown in other POMED media and control. Ankistrodesmus convolutus grown in 40% and 60% LCRE, contained significantly higher (P < 0.05) amounts of all the C18 and C20 polyunsaturated fatty acids (PDFAs) than that cultured in other SMRE media and control, except eicosadienoic acid (20: 2n-11). A similar trend of PUFAs was recorded in A. convolutus cultured in 60% SMRE except eicosatrienoic acid (20:3n-6) and arachidonic acid (20:4n-6). It was found that A. convolutus contained significantly (P < 0.05) higher amount of PUFAs such as linoleic acid (l8:2n-6), linolenic acid (18:3n-3) and arachidonic acid (20:4n-6) when grown in 10% POMED than that cultured in other POMED media and control. This study showed that A. convolutus grown in 40-60% rubber and 10% POMED has higher nutritional value that that cultured in other effluent media and inogranic fertilizer

    Bio-efficacy of microbial infused rice straw compost on plant growth promotion and induction of disease resistance in chili

    Get PDF
    Microbial fortified organic amendment in chili cultivation may affect plant development and disease suppression. Microbial infused rice straw compost, commercial rice straw compost, and fungicide Benomyl for chili (Capsicum annum L.) cultivation and control of Sclerotium foot rot were studied under glass house condition. Chili seed cv. Kulai were sown in the Sclerotium rolfsii infested and non-infested soil. After two weeks, five healthy seedlings were transplanted into planting bags. Growth performance and development of disease symptoms associated with S. rolfsii foot rot infection were assessed. Applying microbial infused rice straw compost increased seed germination and plant growth, and suppressed development of foot rot compared to using commercial rice straw compost and the Benomyl. A higher disease reduction (84.6%) occurred with 15 Mg · ha−1 microbial infused rice straw compost (62.7%), followed by Benomyl (53.8%), and 15 Mg · ha−1 commercial rice straw compost (46.2%). Application of microbial infused rice straw compost at 15 Mg · ha−1 yielded optimum seed germination and seedling establishment, plant growth, and disease suppression. Microbial infused rice straw compost is a good alternative to chemical fungicide in controlling Sclerotial disease in chili

    Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Get PDF
    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe(3)O(4) nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe(3)O(4) nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Q

    Review of electric vehicle energy storage and management system: Standards, issues, and challenges

    Get PDF
    Renewable energy is in high demand for a balanced ecosystem. There are different types of energy storage systems available for long-term energy storage, lithium-ion battery is one of the most powerful and being a popular choice of storage. This review paper discusses various aspects of lithium-ion batteries based on a review of 420 published research papers at the initial stage through 101 published research articles that have been finally reviewed. This review paper focuses on several topics, including electrical vehicle (EV) systems, energy management systems, challenges and issues, and the conclusions and recommendations for future work. EV systems discuss all components that are included in producing the lithium-ion battery. The energy storage section contains the batteries, super capacitors, fuel cells, hybrid storage, power, temperature, and heat management. Energy management systems consider battery monitoring for current and voltage, battery charge-discharge control, estimation and protection, cell equalization. This paper's challenges and issues discuss some of the critical aspects of lithium-ion batteries, including temperature and safety, life-cycle and memory effects, environmental effects, and recycling processes. The conclusion and recommendation of this paper indicate the future scope of research. This review paper can provide the lithium-ion battery's insight, overall synopsis and contribution, and further research directions to the EV system

    Modeling and performance analysis of an adaptive PID speed controller for the BLDC Motor

    Get PDF
    Brushless Direct Current (BLDC) motor is themost popular useable motor for automation and industry. For good performance of the BLDC motor hunger driving circuit but the driving circuit is costly, complex control mechanism, various parameter dependency and low torque. The Proportional Integral (PI), Proportional Integral Derivative (PID), fuzzy logic, adaptive, Quantity Feedback Theory (QFT), Pulse Width Modulation (PWM) controller are the common types of control method existing for the BLDC motor. This research explores some well-working experiments and identified the PID controller as far more applicable controller. For well efficacious and useful in getting satisfied control performance if the adaptability is implemented. This research proposed a combined method using PID and PID auto tuner, having the ability to improve the system adaptability, given the method named as adaptive PID controller. To verify the performance, MATLAB simulation platform was used, and a benchmark system was developed based on the actual BLDC motor parameters, auxiliary systems, and mathematically solved parameters. All work has done by using MATLAB/Simulink

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

    Get PDF
    This work reports on the fabrication and subsequent supercontinuum generation in a Ge-As-Se-Te/Ge-As-Se core/clad chalcogenide step-index fiber with an elliptical-core and an ultra-high numerical aperture of 1.88 ± 0.02 from 2.5 - 15 µm wavelength. The fiber has very low transmission loss of < 2 dB/m from 5-11 µm and a minimum loss of 0.72 ± 0.04 dB/m at 8.56 µm. Supercontinuum spanning from 2.1 µm to 11.5 µm with an average power of ∼6.5 mW was achieved by pumping a ∼16 cm fiber with a minor/major axis core diameter of 4.2/5.2 µm with 250 fs pulses at 4.65 µm wavelength and a repetition rate of 20.88 MHz. The effect of the elliptical-core was investigated by means of mechanical rotation of the fiber relative to the linear pump polarization, and it was found to cause a shift in the supercontinuum spectral edges by several hundred nanometers
    corecore